MARCH, 1911.

THE JOURNAL

OF THE

American Chemical Society

EIGHTEENTH ANNUAL REPORT OF THE COMMITTEE ON ATOMIC WEIGHTS. DETERMINATIONS PUBLISHED IN 1910.

BY F. W. CLARKE. Received January 20, 1911.

During 1910 a number of important papers on atomic weights have appeared, and their results are summarized in the following pages. A third edition of Clarke's "Recalculation of the Atomic Weights," revised and much enlarged, was published by the Smithsonian Institution early in the year. The new data are as follows:

Hydrogen.—Atomic weight recalculated by Grinnell Jones¹ from all the trustworthy determinations. The value finally deduced is H = 1.00775. That found in Clarke's recalculation is 1.00779. The two agree to within one part in 25000.

Nitrogen.—Guye and Drouginine² have determined the atomic weight of nitrogen from analyses of weighed quantities of N_2O_4 . A spiral of iron wire was heated electrically in the gas, and its increase in weight gave the amount of oxygen contained in the latter. The figures are as follows:

Weight N ₂ O ₄ ,	Weight 202.	Weight Ng.	∆ t. wt. N.
0.8856	0.6160	0.2696	14.005
1.8494	1.2860	0.5634	14.019
2.1281	1.4801	0.6480	14.010
1.7191	1.1957	0.5234	14.008
0.9951	0.6921	0.3030	14.010
1.5324	1.0658	0.4666	14 .00 9
1.2425	0.8642	0.3783	14 .00 8

Mean, 14.010

¹ This Journal, 32, 513.

² J. chim. phys., 8, 473.

Clarke's combination of all previous determinations gives N = 14.0101. Richards' value is distinctly lower.

Silver and Iodine.---The ratio between silver and iodine has been remeasured, with extreme care, by Baxter.¹ The corrected weights and ratio are subjoined.

Weight I.	Weight Ag.	Ratio Ag : 1,
9.0 0 62 8	7.65468	0.849927
13.45067	11.43179	0. 849905
11.86 64 8	10.08571	0.84 993 3
8.52461	7.24498	0.84 9890
6.42840	5.46351	0.849902
8.3 0 26 6	7.05641	0.849897
9.95288	8.45904	0.84 990 9
6.97131	5.92591	0,84 989 9
9.388 5 2	7.97927	0.84 98 97
6.56811	5.58231	0.849911
18. 87 136	16.03902	0.8499 13
17.84091	15.16249	0.849872
14.95666	12.71170	0. 849902

Mean, 0.849906

This mean, combined with that found by Baxter and Tilley² for the ratio $_{2}Ag : I_{2}O_{5}$, 0.64230, gives Ag = 107.864 and I = 126.913. These values are remarkably low.

Lithium.—The peculiar merit of the work done by Richards and Willard³ on the atomic weight of lithium, apart from its accuracy, is found in the fact that the ratios measured give values for Ag, Cl and Li which are independent of all previous investigations. Three ratios were measured: LiClO₄ to LiCl (or 4O : LiCl), Ag to LiCl, and AgCl to LiCl. To economize space I omit the "preliminary" series of determinations, and give below only those marked "final." Vacuum weights are given throughout.

	RATIO 40 : LiCl.	
Weight LiClO ₄ .	Weight LiCl.	Ratio.
12.79265	5.09744	1. 509 62
10.55416	4.20534	1.50970
11.39912	4.54205	ı . 50 969
11.17008	4.45070	1.50974
17.84842	7.11167	1.50974
22.58273	8.99 846	1.50962

Mean,

1.50968

¹ THIS JOURNAL, 32, 1603.

² See 17th Report, Ibid., 31, 257, 258.

3 Ibid., 32, 4.

Weight LiCl.	Weight Ag.		Ratio.
5.82422	14.82035		0.392988
6.28664	15.99687		0.392991
5.82076	14.81122		0.392997
.6.70863	17.07038		0.392998
6.24717	15.89620		0.392998
7.75349	19.72977		0.392984
7.99108	20.33415		0.392988
		Mean,	0.392992

RATIO LICI : Ag.

Ratio	T iC1	A of C1
KATIO	LICI	Agui.

Weight LiCl.	Weight AgCl.		Ratio.
6.28662	21.25442		0.295779
5.82076	19.67873		0.295790
6.70863	22.68030		0.295791
6.24717	21.12073		0.295784
5.50051	18.59600		0.295790
8.34521	28.21438		0.295779
6.65987	22.51564		0.295789
		Mean,	0.295786
		,	201

From these ratios, combined, Ag = 107.871, Cl = 35.454, and Li = 6.939. The authors regard the value for silver as representing the lower limit for that constant.¹

Calcium.—Atomic weight redetermined by Richards and Hönigschmid,² from analyses of calcium bromide. Two ratios were measured, with the following results. Vacuum weights are implied. Values calculated with Ag = 107.88, Br = 79.916.

Ratio CaBr₂: 2Ag.

Weight CaBr ₂ .	Weight 2Ag.		At. wt. Ca.
4.20860	4.54252		40.068
4.58644	4.95025		40.071
5.34866	5.77301		40.068
7.23724	7.81126		40.073
4.67673	5.04779		40.068
7.41636	8.00455		40.074
		Mean,	40.0703

¹ Scheuer, J. chim. phys., 8, 289, discusses the atomic weight of chlorine as deduced from the density of HCl. The paper is practically a reproduction of one cited last year. Hinrichs, *Compt. rend.*, 151, 513, argues that Ag = 108 exactly.

² THIS JOURNAL, 32, 1577. A second paper by the same authors is in THIS JOURNAL for January, 1911.

	RATIO CaBr ₂ : 2AgBr.	
Weight CaBr ₂ .	Weight 2AgBr.	▲t . wt. Ca.
10.18591	19.13778	40.073
7.92400	14.88810	40. 072
6.78048	12.73961	40.072
6.45970	12.13702	40.070
5.95390	11.18684	40.067
5.15998	9.69513	40.067
	Me	an, 40.0702

Why this determination, which confirms the earlier work of Richards, should be so much lower than that of Hinrichsen is unexplained. The new work is probably to be preferred.

Strontium.—Thorpe and Francis¹ have redetermined the atomic weight of strontium by several distinct methods. The corrected weights are given in the following summary of results:

	RATIO SrBr ₂ : 2Ag		
Weight SrBr ₂ .	Weight 2Ag.		Ratio.
1.77884	1.55073		1.1471
1.86109	1.62260		1.1470
1.85254	1.61511		1.1470
1.73801	1.51534		1.1470
1.85787	1.61994		1.1469
1.70563	1.48707		1.1470
		Mean,	1.1470
Hence $Sr = 87.645$.			
	RATIO SrBr, : 2AgB	r.	
Weight SrBr ₂ .	Weight 2AgBr.		Ratio.
1.86112	2.82438		0.65895
1.85261	2.81155		0.65893
1.73807	2.63762	•	0.65895
1.85798	2.81999		0.65886
1.70571	2.58866		0.65892
		Mean,	0.65892
Hence $Sr = 87.653$.			
	RATIO SrCl ₂ : 2Ag.		
Weight SrCl ₂ .	Weight 2Ag.		Ratio.
1.64759	2.24203		0.73486
1.66352	2,26356		0.73491
1.53462	2.08817		0.73491
1.64619	2.24011		0.73487
1.76006	2.39486		0.73493
1.56224	2.12572		0.73492
		Mean,	0.73490
Hence $Sr = 87.642$.			

Hence Sr = 87.642.

¹ Proc. Roy. Soc., 83 (A), 277.

	RATIO SrCl ₂ : 2AgCl.	
Weight SrCl ₂ .	Weight 2AgCl.	Ratio.
1.64764	2.97899	0.55309
1.66357	3.00762	0.55312
1.53467	2.77416	0.55314
1.64624	2.97653	0.55307
1.76010	3.18202	0.55314
	Mear	1, 0.55311

Hence Sr = 87.645.

Supplementary determinations were made by determining the ratios SrBr₂ : SrSO₄, and SrCl₂ : SrSO₄, as follows:

	RATIO SrBr2 : SrSO4.		
Weight SrBr ₂ .	Weight SrSO4.		Ratio.
7.14570	5.30466		1.3471
7.64281	5.67326		1.3472
9.86072	7.32047		1.3470
Honor St St. Goo		Mean,	1.3471
Hence $Sr = 87.629$.	D 0 01 0 00		
	RATIO $SrCl_2$: $SrSO_4$.		
Weight SrCl ₂ .	Weight SrSO4.		Ratio.
7.30246	8.46071		0.86310
8,71628	10.09868		0.86311
8.46493	9.80743		0.86311
8 79502	10.18959		0.86314
		Mean,	0.863115

Hence Sr = 87.661.

The authors adopt 87.65 as their final value, after discussing the relative merits of the several ratios. The calculations are based upon Ag = 107.88, Cl = 35.46, Br = 79.916, and S = 32.07.

Mercury.--Easley¹ has continued his research upon the atomic weight of mercury, the first part of which was noticed last year. Mercuric chloride was analyzed by electrolysis, giving the subjoined results. The weights are reduced to a vacuum, and the calculations are based upon C1 = 35.46.

F	PRELIMINARY SERIE	s.	
Weight HgCl ₂ .	Weight Hg.		At. wt. Hg.
10.05743	7.43123		200.68
8.41289	6.21687		200.71
10.99056	8.11897		200.52
10,28282	7.59681		200.58
19.57120	14.46032		2 00 .65
		Mean,	200.63

265

¹ THIS JOURNAL, 32, 1117.

	FINAL SERIES.		
Weight HgCl ₂ .	Weight Hg.		At. wt. Hg.
8.14695	6. 0190 9		200.61
11.03881	8.15592		200.64
13.48192	9.96129		200.66
11.08026	8.1 8 610		200.60
11.31231	8.35819		200.66
21.44026	15.84060		200.62
		Mean,	200.63

This confirms the previous work, and seems to prove that the heretofore accepted value for mercury is too low.

Phosphorus.—Atomic weight redetermined by Baxter and Jones¹ from analyses of silver phosphate.

Weight Ag ₈ PO ₄ .	Weight 3AgBr.	Ratio.
6.02166	8.34490	1.34558
6.35722	8.55419	1.34559
5.80244	7.80819	1.34567
5.05845	6.80685	1.34564
3.34498	3-43544 (AgCl)	1.34560
7.15386	9.62694	1.34570
7.20085	9.68947	1.34560
6.20182	8.34522	1.34561
5.20683	7.00605	1.34555
	Mean,	1.34562

In experiment 5 the silver was weighed as chloride, but recalculated to bromide in the ratio. With Ag = 107.88, P = 31.043.

Vanadium.—Prandtl and Bleyer, whose work on the atomic weight of vanadium was noticed in my report for 1909, have published a second memoir² on the subject. Eight new analyses of vanadyl trichloride are given, of which four are rejected as defective. The four satisfactory determinations follow, with vacuum weights, and the ratio $_{3}AgCl$: VOCl₃:: 100: x.

Weight VOCla.	Weight 3AgCl.		Ratio.
7.77585	19.26836		40.301
8.41904	20.86554		40.311
10.66137	26.42699		40.321
5 .5 39 98	13.73492		40.333
		Mean,	40.3165

From these figures, combined with the earlier series, the authors deduce V = 51.061, ± 0.024 , when Ag = 107.880 and Cl = 35.460.

Prandtl and Bleyer also investigated the ratio V_2O_5 : V_2O_3 , by re-

¹ THIS JOURNAL, 32, 298.

² Z. anorg. Chem., 67, 257.

duction of the pentoxide in hydrogen. Their determinations, with vacuum weights, appear in the next table.

Weight V2O5.	Weight V ₂ O ₃ .		At. wt. V.
9.11431	7.51639		51.261
9.85727	8.13127		51.376
8.70923	7.18456		51.395
12.26426	10.11721		51.394
		Mean,	51.3565 ¹

Although these determinations agree with Roscoe's, the authors regard them as doubtful. Their $VOCl_3$ determinations are preferred.

The work of McAdam² on this constant consisted in reducing NaVO₃ to NaCl by heating in dry HCl. With vacuum weights, and NaCl = 58.46, the following results were obtained:

Weight NaVO ₈ .	Weight NaCl.		At. wt. V.
4.8564	2.3277		50.966
5.6404	2.7033		50.976
4.4263	2.1220		50.946
5.7805	2.7710		50.952
9.4902	4.5478		50.997
		Mean,	50.967

Taking into consideration the determinations of Prandtl and Bleyer, the atomic weight of vanadium may be rounded off to 51.

Tantalum.—Balke's³ determinations of the atomic weight of tantalum are based upon the hydrolysis of the pentachloride. With vacuum weights and Cl = 35.46, the final results are as follows:

Weight TaCl5.	Weight Ta ₂ O ₅ .		At. w t. Ta.
12.99680	8.02326		181.49
9.24957	5.71104		181.60
10.17456	6.28133		181.52
17.99542	11.11014		181.55
11.70558	7.22693		181.55
6.24767	3.85658		181.46
7.26375	4.48398		181.48
15.88270	9.80465		181.49
		Mean,	181.52

The rounded-off number 181.5 is to be accepted.

Tellurium.—Marckwald and Foizik,⁴ by a complex volumetric process, find for this atomic weight the value 127.61. The data are too bulky and complicated for reproduction here. The purpose of the investigation

² This Journal, 32, 1603.

⁸ Ibid., 32, 1127.

4 Ber., 43, 1710.

¹ The authors give 51.374.

was not so much to determin the atomic weight exactly, as to ascertain the cause of the low value found in several previous researches.

Flint¹ has continued the work reported by Browning and Flint in 1909 on the fractionation of tellurium by hydrolysis of the tetrachloride. The unfractionated material, by the basic nitrate method, gave Te = 127.45. Progressive diminution of the atomic weight was noted in a series of fractions, namely the fourth, eight and tenth. The tenth gave low atomic weights as shown in the following table:

Weight Te2HNO7.	Weight TeO	At. wt. Te.
2.06311	1.71688	124.25
2 , 18903	1.82172	124.27
3.56161	2.96446	124.42
2.99821	2.49537	124.37
2.86977	2.38824	124.27
2.47403	2.05898	124.31
4.85363	4.03943	124.32
		Mean. 124.32

The investigation is still in progress; but the present results are promising, and seems to show that ordinary tellurium is really a mixture. If that should be proved, all former determinations of the atomic weight would go for nothing.

Scandium.—Preliminary determinations of the atomic weight of scandium, by the sulfate method, are given by Meyer and Winter,² but without the detailed weighings. The values found for Sc range between 44.86 and 45.37; in mean, 45.12. This is much higher than the accepted value.

Neodymium.—By very careful analyses of neodymium chloride, Baxter and Chapin³ have determined the atomic weight of the metal. Two ratios were measured, with vacuum weights, and reduced with Ag = 107.880 and Cl = 35.457.

	RATIO NdCl ₂ : 3Ag	•	
Weight NdCl ₃ .	Weight 3Ag.		At. wt. Nd.
4.27402	5.51855		144.283
2.79574	3.61030		144.249
2.77391	3.58196		144.259
3.42064	4.41695		144.267
4.11855	5.31786		144.280
3.95958	5.11289		144.266
4.64435	5.99699		144.271
		Mean,	144.268

¹ Am. J. Sci., [4] 30, 209.

² Z. anorg. Chem., 67, 398.

³ Proc. Am. Acad., 46, 215 (1910); reproduced in THIS JOURNAL for January, 1911.

	KATIO Much . Jagei.	
Weight NdCl ₈ .	Weight 3AgCl.	At. wt. Nd.
3.16218	5.42546	144.257
2.93305	5.03226	144.262
2.99149	5.13195	144.289
2.62468	4.50338	144.250
2.38439	4.09064	144.278
2.55827	4.38891	144.280
3.59114	6.16095	144.277
4.27402	7.33203	144.293
4.69459	8.05444	144.264
2.79574	4.79630	144.280
2.59810	4.45741	·144.270
3.42064	5.86872	144.265
4.11855	7.06518	144.298
3.95958	6.79345	144.262
2.71834	4.66395	144.257
	М	fean, 144.272

RATIO NdCl. : 3AgCl.

A slight correction for a little unseparated praseodymium raises the value to 144.275. This is doubtless the best determination of the constant yet made.

Erbium.—Hofmann,¹ by analyses and syntheses of the sulfate, has made three new determinations of the atomic weight of "neoerbium."

Weight E1 ₂ O ₃ .	Weight sulfate.	Weight ErgO3.		At. wt. Er.
0.3117	0.5070	0.3117		167.67
0.4486	0.7296	0.44863		167.7 3
0.3718	0.6048	0.3718		167.64
			Mean,	167.68

The oxide in the first column was converted into sulfate, which, on calcination, gave the oxide of the third column. Calculated with S = 32.07.

The Helium-Argon Group.—Watson² has determined the weight of a normal liter of helium as 0.17814 and 0.17830 gram. Hence He = 3.994. For neon, eleven determinations of the normal liter ranged from 0.8997 to 0.9006 gram; in mean, 0.9002. This, by the method of limiting densities, gives Ne = 20.200. By the same method Watson³ has reduced the densities of krypton and xenon, as measured in 1908 by Moore.⁴ The final values are Kr = 82.92 and Xe = 130.22.

The density of argon has been redetermined by Fischer and Hähnel.⁵

⁴ Proc. Chem. Soc., 24, 273.

^b Ber., 43, 1435.

¹ Ber., 43, 2635.

² J. Chem. Soc., 97, 819.

⁸ Ibid., 97, 833.

The mean of seven determinations is 19.945, referred to O = 16. Hence A = 39.89.

Ramsay and Gray,¹ by means of the microbalance, have been able to weigh the gaseous emanation of radium, for which they propose the name *niton*. The values thus found for its molecular weight are 222, 216, 227, 218, 217, in mean 220. The same value was also found by Debierne² by a different method.

Miscellaneous Notes.—Richards and Baxter³ have investigated the subject of density corrections, or in other words the reduction of weights to a vacuum. They regard the validity of the corrections, as applied at Harvard, as well established. Relations between the atomic weights have been studied by Howard.⁴ Dubreuil⁵ has continued his recalculation of the determinations of Stas.

[CONTRIBUTIONS FROM THE CHEMICAL LABORATORY OF HARVARD COLLEGE.] THE ULTRAVIOLET ABSORPTION SPECTRUM OF AQUEOUS SOLU-TIONS OF NEODYMIUM CHLORIDE.

BY GREGORY PAUL BAXTER AND TRUMAN STEPHEN WOODWARD.

Received December 22, 1910.

In a recent paper upon the atomic weight of neodymium⁶ the absorption spectrum of aqueous solutions of neodymium salts from λ 7000 to λ 4000 is described. After the earlier measurements were made a large quartz spectrograph became available, and with this instrument the ultraviolet absorption spectrum of aqueous neodymium chloride has been examined.

The spectrograph was constructed by R. Fuess, Berlin. It has lenses 5 cm. in diameter, provided with diaphragms, and of about 80 cm. focal length, while the 60° Cornu prism is of 5 cm. base and 4.5 cm. high. In order to avoid as far as possible difficulty from double refraction the diameter of the lenses was diminished one-half with the diaphragms. By means of a series of trial negatives, with the spark of a cadmium alloy for illumination, the prism was set in the position of minimum deviation for approximately λ_{3400} , and the positions of the collimating and camera lenses were so adjusted that the region λ_{2500} to λ_{7500} was in fair focus throughout. Owing to the curvature of the spectrum image, it was not possible to have a wider range in focus at any one time. However, this range included the whole of the best continuous spectrum which we were able to produce.

¹ Compt. rend., 151, 126.

² Ibid., 150, 1740.

³² This Journal, 32, 507.

^{*} Chem. News, 101, 181, 265.

^A Bull. soc. chim., [4] 7, 119.

⁶ Baxter and Chapin, Proc. Am. Acad., 46, 215 (1910); THIS JOURNAL, 33, 13.